US009479382B1

United States Patent

(12) (10) Patent No.: US 9,479,382 B1
Ward, Jr. 45) Date of Patent: Oct. 25,2016
(54) EXECUTION PLAN GENERATION AND 8,055,493 B2 11/2011 Rolia et al.
SCHEDULING FOR 8,595,191 B2* 11/2013 Prahlad GOG6F 17/30091
707/654
NETWORK-ACCESSIBLE RESOURCES 8,615,584 B2 12/2013 Dawson et al.
2003/0028642 Al 2/2003 Agarwal et al.
(75) Inventor: David John Ward, Jr., Seattle, WA 2003/0088482 Al 5/2003 Blumberg
(US) 2003/0126196 Al 7/2003 Lagimonier et al.
2003/0229529 Al 12/2003 Mui et al.
H . : 2004/0030740 Al 2/2004 Stelting
(73) Assignee: Amazon Technologies, Inc., Reno, NV 2004/0243430 Al 122004 Horstemeyer
(Us) 2006/0152756 Al* 7/2006 Fellenstein G06Q 40/04
358/1.15
(*) Notice: Subject to any disclaimer, the term of this 2006/0159014 Al 7/2006 Breiter et al.
patent is extended or adjusted under 35 2007/0219837 Al 9/2007 Lu et al.
U.S.C. 154(b) by 403 days. (Continued)
(21) Appl. No.: 13/431,393 OTHER PUBLICATIONS
(22) Filed: Mar. 27, 2012 “Amazon EC2 Spot Instance,” Amazon Web Services LLC, Down-
loaded Mar. 26, 2012, 11 pages.
G Int. Cl. (Continued)
GO6F 15/173 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01) Primary Examiner — Joshua Joo
GO6Q 30/08 (2012.01) Assistant Examiner — Younes Naji
(52) US.CL (74) Attorney, Agent, or Firm — Robert C. Kowert;
CPC oo, Ho4L 29/06 (2013.01); Go6Q 30/08 ~ Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(2013.01); HO4L 29/08 (2013.01)
(58) Field of Classification Search G7) ABSTRACT
CPC GOG6F 9/46; GOGF 9/50; HO4L 29/08144, Methods and apparatus for deadline-based pricing and
G06Q 10/06; GO6Q 10/06316; GO6Q scheduling of network-accessible resources are disclosed. A
30/0283 system includes resources organized into a plurality of
See application file for complete search history. pools, and a resource manager. The resource manager
receives a task execution query comprising a specification of
eferences Cite a task to be performed for the client. The specification
(56) Refi Cited k to be performed for the cl The specifi
US. PATENT DOCUMENTS includes the task’s deadline and a budget constraint..ln
response, the resource manager generates a task execution
5,692,174 A * 11/1997 Bireley ..o GOGF 17/30445 plan comprising using a resource from a selected pool to
6:42 1:728 Bl 7/2002 Mohammed et al. perform at least part of the task, where the pool is selected
6,493,685 Bl 12/2002 Ensel et al. based at least partly on a pricing policy of the pool. In
7/412,538 Bl 8/2008 Eytchison et al. response to an implementation request for the task, the
;’gi;éé? g} légg?g S:;I; ulen ef al resource manager schedules at least a part of the task using
7768.920 B2 8/2010 Goshen etal. a particular resource from the selected pool.
7,870,044 B2 1/2011 Robertson
8,024,225 Bl 9/2011 Sirota et al. 24 Claims, 13 Drawing Sheets
System 100 (: o PyiderNetwors 110 T— A
Availability Zone 120A
e et e ron |1 (e e K
ey Instance Instance e é !’ Instance Pook) 121 E
) |G- A G
‘: see
Resource E
Im:::::;’ﬁw ______________ H (" Avaiabity Zone 120 \
Spot Instance Pool 121C ': Instance Pool(s) 121 '
it ((nstance nstance H Instances H
C:ljé“ Queries and E LA J \, i J/
Task é Avalabiiy Zone 1208
Requests i {7 nstance Pools) 121 \
il Instances i
K
)

US 9,479,382 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0080396 Al
2008/0103848 Al
2008/0167928 Al
2008/0243666 Al
2009/0049114 Al
2009/0182598 Al
2009/0276771 Al
2009/0281952 Al
2009/0300635 Al
2010/0010657 Al
2010/0050172 Al
2010/0070397 Al
2010/0131624 Al
2010/0131649 Al
2010/0217865 Al
2010/0241479 Al*

4/2008 Meijer et al.
5/2008 Santos et al.
7/2008 Cao et al.
10/2008 Rowan
2/2009 Faraj
7/2009 An et al.
11/2009 Nickolov et al.
11/2009 Toffey et al.
12/2009 Ferris
1/2010 Do et al.
2/2010 Ferris
3/2010 Hahn-Carlson et al.
5/2010 Ferris
5/2010 Ferris
8/2010 Ferris
9/2010 Chaushev GO06Q 10/063114

705/7.15

2010/0306379 Al 12/2010 Ferris

2011/0119104 Al 5/2011 Levine et al.

2011/0131335 Al 6/2011 Spaltro et al.

2011/0137805 Al 6/2011 Brookbanks et al.

2011/0138050 Al 6/2011 Dawson et al.

2011/0138051 Al 6/2011 Dawson et al.

2011/0145094 A1* 6/2011 Dawson GOG6F 9/5027

705/26.63

2011/0145392 Al 6/2011 Dawson et al.

2011/0154353 Al1* 6/2011 Theroux GOG6F 9/5038
718/104

2011/0161964 Al 6/2011 Piazza et al.

2011/0173038 Al 7/2011 Moon et al.

2011/0173626 Al 7/2011 Chi et al.

2011/0179132 Al 7/2011 Mayo et al.

2011/0202657 Al 82011 Chang

2011/0213691 Al 9/2011 Ferris et al.

2011/0213712 Al 9/2011 Hadar et al.

2011/0238458 Al 9/2011 Purcell et al.

2011/0295986 Al 12/2011 Ferris et al.

2011/0295998 Al 12/2011 Ferris

2011/0296025 A1 12/2011 Lieblich et al.

2012/0016721 Al* 1/2012 Weinman G06Q 10/06
705/7.35

2012/0131161 Al 5/2012 Ferris et al.

2012/0159506 Al* 6/2012 Barham GOG6F 9/5044
718/104

2012/0173725 Al* 7/2012 Verma GOG6F 9/5027
709/225

2012/0198462 Al* 82012 Cham ... GOG6F 9/5038
718/103

2013/0111027 Al 5/2013 Milojicic et al.

2013/0173418 Al 7/2013 Goad et al.

2013/0212279 Al 8/2013 Dutta et al.

2013/0232252 Al 9/2013 Huang et al.

2013/0238785 Al 9/2013 Hawk et al.

2013/0246208 Al* 9/2013 Jainccccoovviviiiinnne GO6F 9/50
705/26.3

OTHER PUBLICATIONS

“Amazon EC2 Instance Types,” Amazon Web Services LLC,
Downloaded Mar. 26, 2012, 5 pages.

“Amazon EC2 Reserved Instances,” Amazon Web Services LLC,
Downloaded Mar. 26, 2012, 6 pages.

“Amazon EC2 Instance Purchasing Options,” Amazon Web Ser-
vices LLC, Downloaded Mar. 26, 2012, 2 pages.

“Amazon EC2 Pricing,” Amazon Web Services LLC, Downloaded
Mar. 26, 2012, 8 pages.

Amazon Web Services, “Discussion Forums; Existing Connections
Dropped Rudely when Instance Taken out of ELB”, Eric Hammond,
Feb. 25, 2011, pp. 1-4.

Amazon Web Services, “Amazon Elastic Compute Cloud (Amazon
EC2)”, Mar. 24, 2011, pp. 1-26.

Amazon Web Services, “Amazon EC2 Pricing”, Feb. 28, 2011, pp.
1-13.

Amazon Web Services, “Amazon EC2 Spot Instances”, Feb. 24,
2011, pp. 1-5.

Amazon Web Services, “Amazon CloudWatch”, Feb. 24, 2011, pp.
1-5.

U.S. Appl. No. 13/535,720, filed Jun. 28, 2012, Matthew D. Klein,
et al.

U.S. Appl. No. 13/535,715, filed Jun. 28, 2012, Matthew D. Klein,
et al.

U.S. Appl. No. 13/535,707, filed Jun. 28, 2012, Matthew D. Klein,
et al.

U.S. Appl. No. 13/535,725, filed Jun. 28, 2012, Matthew D. Klein,
et al.

AWS Documentation, “Using Cluster Instances,” downloaded from
docs.amazonwebservices.com/ AWSEC2/1atest/UserGuide/using_
cluster__computing html on May 16, 2012, pp. 1-6.

Amazon Web Services: AWS Products & Solutions, “High Perfor-
mance Computing (HPC) on AWS,” downloaded from aws.amazon.
com/hpc-applications/ on May 16, 2012, pp. 1-3.

Timo Schneider (personal website), “An Oblivious Routing Con-
gestion Simulator,” downloaded from perlplexity.org/Research/
ORCS/ on May 16, 2012, pp. 1-8.

U.S. Appl. No. 13/431,379, filed Mar. 27, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/431,388, filed Mar. 27, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/429,957, filed Mar. 26, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/431,355, filed Mar. 27, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/429,985, filed Mar. 26, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/431,348, filed Mar. 27, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/431,360, filed Mar. 27, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/430,003, filed Mar. 26, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/475,399, filed May 18, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/475,359, filed May 18, 2012, David John Ward,
Jr.

U.S. Appl. No. 13/461,605, filed May 1, 2012, David John Ward, Jr.,
et al.

U.S. Appl. No. 13/476,828, filed May 21, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/475,461, filed May 18, 2012, David John Ward,
Jr., et al.

U.S. Appl. No. 13/331,750, filed Dec. 20, 2011, Amazon Technolo-
gies, Inc., all pages.

Agarwal, Sharad, et al. “Volley: Automated Data Placement for
Geo-Distributed Cloud Services.” 2010, pp. 1-16.

* cited by examiner

US 9,479,382 B1

Sheet 1 of 13

Oct. 25, 2016

U.S. Patent

L ainbi4

P L L L L L L L L L A i e e L A L A L L L L LR L LI X T

N i aindedeided S S indbededndaddededededdadeddededadadd ¥ ‘llnnllllnnnllllnnlllllnnlllllloj

cee)

s e a

N

L4

“ 1]
[} L}
' SeouBjSU| ;
: = :
I sysanboy
tte aU07 AIGE[Ien uopeuswaiduw|
\. q0g7 suoZ Aliceliery i _
\ see N see IJ pue ssusnd i

smmemmccamcscccmmeccccasnas, uopnosxg ysel 8D

smeEEseccessssccasssccsanna

HoEl o0¢l
2ouBjsu| souesu|

JTZ1 100d soueysu jodg

‘ssescecsassscsscsasscscscscsaccas”’

0cr
m@o:mﬁc_

5)1004 Souejsu|

“secccsssccccssscccscccccas

ommmmmaa,
‘ecccass’

g8l
Jabeuepy soeps)u|

LTI

30¢€1 aoct
20uB)SU| soue)su|

Grer [00d 2ouBjsu| pUBWIAP-UD

T0CT suoz Aige|ieny

087 Jabeuepy
80In0SaY

J

\.
\ L

PLAL LI L LIS L A L L L X TN

0ct
S9OUEJSU|

TZT (s)jood soueisu|

Sessscessssscsssssscscnsncas

L 4

qoch YOer
souBIsu| 80UEB)SU|

Y1¢l 1004 adue)su| parlessy

Y0z) suoz Ajlligeliery Y,
ger) uoibay . TZ17 uoibay ,

Cosesssccsescssccsses
ceccscssaccscsenscsccscsnscscsacsasnnad®

IOMIDN J9| _>o_.
_ 0FT JomieN Jop Y

161 8seqeieq
swabeuep

80IN0SAY

ommmecan,
“seceocse*

_ M0z 3uoz Ajligeleny

PLXLEL LYY I

’
-

.

T Py

r

P L L LI L L L L L L L L L I LI LI L LRI
PLLAL L LY R L L LI L R LI LRI LRI L LI L LY I

007 WalsAg

~------ CEELE R XL DL LR L ERZEZEX L L ELELLELELLERREZX) -----------------------‘

’

B T L L L L L L L L L L L L T L L T e L T Y e T g

U.S. Patent

/

Oct. 25, 2016

Sheet 2 of 13

Instance Types 201

US 9,479,382 B1

\

Reserved Instances
203

On-demand Instances
205

Spot Instances 207

Pricing Policy 205P

Pricing Policy 207P

High Uptime-Ratio
Instances 209

Medium Uptime-Ratio
Instances 211

Pricing Policy 209P

Pricing Policy 211P

Low Uptime-Ratio
Instances 215

/

Pricing Policy 215P

Figure 2a

Instance Performance
Ratings 251

\

Small Instances 253

Medium Instances
255

Large Instances 257

Pricing Policy 253P

Pricing Policy 255P

Pricing Policy 257P

Figure 2b

US 9,479,382 B1

Sheet 3 of 13

Oct. 25, 2016

U.S. Patent

£ ainbiH

1 GE UE|d uolindsx3

-

TOE spioosy abesn

€08 eje(buoug

091 Jebeuep
80IN0S9Y

1T sjuswalnbay
Jajsuel] ereq

T1T sjuswalnbay
unoY) 8dUBISY|

1€
sjurensuo?) buiwi] yse|

B0€ sleoo
/S)uiensuo) 1ebpng yse|

Z0€ uoneoyosds yse|

€0¢
Alenp uonnoax3 yseL

U.S. Patent Oct. 25, 2016 Sheet 4 of 13 US 9,479,382 B1

Task Execution Query 303

Query Type (e.g.,
GeneratePlanForDeadlineAndBudget,
EstimateCompletionDateForBudget,
EstimateCostForCompletionDate,
GenerateCheapestPlan,
GeneratePlanForinstanceCount,
GeneratePlanForDataTransfer) 403

Task Specification 307 / SubTask Specification 421
AutoGenerateSubTasks 405 SubTask Name and Description 422
AutoScheduleSubTasks ﬂ SubTask Type (e.g., Compute V8.

7 data transfer) 461

SubTaskCollection 409 Executable Component Details 423
[SubTask410A |
| SubTask 4108 Data Set Details 425
[SubTask 410C \\ Interrupibility Setting 427

\\ Performance Requirements 429

Task Budget Constraints/Goals 309 Parallelizable Setting 431

Task Timing Consraints 311 Dependencies 433

SubTask Budget Constraints 435

Task Execution Location Preferences
H3 \ SubTask Timing Constraints 437

Task Interruptibility Preferences 415 SubTask Location Preferences 439

Task Parallelizability Preferences 416

| Instance Count Requirement 471 |

| Data Tansfer Requirement 472 |

Figure 4

U.S. Patent Oct. 25, 2016 Sheet 5 of 13 US 9,479,382 B1

Execution Plan 351

Last-updated Timestamp 503

| Previous Version Pointer 505 |

| Initial Cost Estimate 521 |

| Accumulated Cost 523 |
SubTask Schedule ﬂ SubTask Execution Details w
k1D 539
SubTask 410A SubTask ID 539
Execution Details 509A
Resource ID(s) 541
y Scheduled Start Time 543
SubTask 410B

Execution Details 5098 Actual Start Time 549

/ \ Estimated Percent Completed 545
SubTask 410C SubTask 410D Estimated Completion Time 547

Execution Execution
Details 509C Details 509D Current Status 551

l \ Accumulated SubTask Cost 553

SubTask 410E \ Exception/Error List 555
Execution
Details 509E
SubTask 410F
Execution
Details 509F

Figure 5

US 9,479,382 B1

Sheet 6 of 13

Oct. 25, 2016

U.S. Patent

9 aunbiH

081 19

Beuepy 20In0saYy

oUmCeanan,

4

paposu se suejd uonpnoaxe 0] sarepdn
J10/pUB SNIEIS JUBLIND SMBIA UBID */

P3INPaYIS USSY SARY SYSE)
-NS JO SYSB] 18U JUSI|D SULOJUI JaBeuBRW 80IN0SaY 9

uerd uonnosxs paiads 1o} 68 1senbal
uonejuaWwa|dwi ySey SHIgns Jus) g

Aue Jl ‘sausnb oueusds
JHBUM 0) SBSU0dsal Spuas J1abeuew a2IN0say

pa1I0ads SOLBUDS JI-IBYM
tm sauanb sywigns ugio ‘Aeuondo ¢

a[qejieae s uejd uonnoaxs Bunesipul
““6-9 ‘osuodsas L1onb spuas Jabeuew 82IN0s3Y ¢

ocndueacnccncadaccaccsacscsabhacsancschcccccchacsancahaccccacaa

L3

cscapaan®

€09
(s)soBN8IUI SnBWWERIB0IJ

Aisnb uonnoaxa ¥se) spqns Jusly ‘|

o0

¥l UsID

U.S. Patent Oct. 25, 2016 Sheet 7 of 13 US 9,479,382 B1

700

¥

Task Query Submission Form Page
<) https://<website>.com/taskQueryForm

To help us generate the optimal execution plan, <703
please provide as many details as you can below.

You must specify either a task completion deadline, a
task budget, or both!

Task-level information

Task ID (for previously-created tasks) Leave blank if this is the first
query for the task.

~J
o]
O

Task description

~
o]
b

Task type (e.9., compute/dataTransfer/
mixed) Compute (default)

~
o
[{e]

~J
—
—

Task executable type JDK 1.6 JAR file (default)

Task completion deadline 713
Task budget target or goal Get me the cheapest plan 715
{default) —_—
Preferred availability zone [AZ0S East Coast-003
{Default) L
Preferred instance types (Reserved/On-
demand/spot) Any (default) 719
Preferred interruptibility level Interruptible and idempotent 721
{default) —_—
Instance count/size Any (default) 723
Data transfer requirements Any (default)

~
N
~

- ?
Auto-generate subtasks? Yes (default)

~J
N
)]

I R R S A S

Auto-schedule subtasks?

~l
N
~J

Yes (default)

Next

[{e]

Click to specify subtask details -+ 2 ?

31

Figure 7

U.S. Patent Oct. 25, 2016 Sheet 8 of 13

800

¥

US 9,479,382 B1

SubTask Detail Submission Form Page

<) https://<website>.com/subTaskDetails

subtask 0001 below.

Please provide as much information as you can about “*—

803

SubTask 0001 information

Subtask name

Subtask description

Subtask type (e.g., compute/dataTransfer) Compute (default)

Subtask executable

Subtask interruptibility setting Interruptible (default)

Subtask performance requirement Small instance (default)

Preferred availability zone AZ-U.S. East Coast-003
(Default)
Subtask depends on these other subtasks | None (default)
Subtask budget limit None (use overall task budget)
Subtask timing constraint None (use overall task budget)
Click to specﬁy next subtask <
details @

(o]
(==}
[$)]

co
\=]
~l

Co
|}
KO

(ee]
S
[OV)

PP 4obt

Co
.
[9)]

o
—
~

Co
ke
©

Co
N
—

Fpe

[oe]
N
[O%]

Done with ‘/&

subtasks

Figure 8

U.S. Patent Oct. 25, 2016 Sheet 9 of 13 US 9,479,382 B1

00

s

Task Execution Query Response Page
K<) nhtips:/i<website>.com/TEQueryResponse

Based on the details you provided, here are some
details of a feasible execution plan:

Plan is current as of: 12/15/2011 08:00 EDT % 904

Estimated Completion Date: 01/26/2012 (Specified deadline: 02/02/2012) Click to change deadline I/
01

Estimated Cost: $ XX.yy (Specified budget: 3AA.bb) Click to change budget |/

SubTask plans: (Click here for more details) '$—1

SubTask 0001 (Estimated start: 01/01/2012 end: 01/05/2012)

6 Small On-demand Instances , AZ-0001 $NN.nn

SubTask 0002 (Estimated start: 01/05/2012 end: 01/15/2012)
3 Large On-demand Instances, AZ-0001 $PP.pp

/ﬁ
Would you like us to implement this execution plan?
O Yes O No O Tell me more...

View graphical display of
execution plan o 15

Return to home page g— 17

U.S. Patent Oct. 25, 2016 Sheet 10 of 13 US 9,479,382 B1

1000

Task Execution Status Page
K<) nhttps://<website>.com/TEStatus

Task Status For Task ID: T65456655 (Genome -+ 1002
Analysis G1323)

Status is current as of: 01/03/2012 08:00 EDT Refresh —3 -

—
o
O
=

N

Estimated Completion Date: 01/26/2012 (Specified deadline: 02/02/2012)

.
(e=]
=)

~r

N

Estimated Cost: $ XX.yy (Specified budget: $AA.bb)

—
o
—
—

SubTask Status: (Click here for more details)

N

SubTask 0001 Actual start: 01/01/2012
Estimated start: 01/01/2012
Estimated end 01/05/2012

Status: Running
6 Large On-demand Instances, AZ-0001

Current accumulated cost: $G.gg
Click to view latest output

Click to view exception/error log
SubTask 0002 Estimated start: 01/05/2012
Estimated end 01/15/2012

Status: Scheduled for execution
3 Large On-demand Instances , Medium Uptime Ratio, AZ-0001

Return to home page ‘_v' 017

Figure 10

U.S. Patent Oct. 25, 2016 Sheet 11 of 13 US 9,479,382 B1

Receive task execution query with task
specification, goals (e.g., “cheapest plan
available”), requirements and/or constraints
(e.g., instance counts, data transfer, deadline
and/or budget constraints), via programmatic or
other interface 1101

;

Generate execution plan, selecting at least one

resource pool or type of resource to be used to

perform task, e.g., based on pricing of various

resources and on task specification details and
preferences 1105

l

Provide indication of execution plan 1109

Receive task implementation request 1113

Schedule task in accordance with approved
execution plan 1117

Figure 11

U.S. Patent Oct. 25, 2016 Sheet 12 of 13 US 9,479,382 B1

Receive task execution query requesting
automated sub-task scheduling 1201

Y

Analyze task specification, identify and/or
generate sub-tasks 1203

!

Based on sub-task constraints, e.g.,
interruptibility settings, dependencies,
parallelizability, generate initial sub-task
schedule identifying relative timing of sub-tasks
and resources to be used for each sub-task
1206

:

Receive task implementation request 1209

Y

Schedule execution of next sub-task or parallel
set of sub-tasks 1212

A

All sub-tasks
attempted? 1215

Yes

emaining sub-task plans need

modification? 1218
Yes

> Modify remaining sub-task plans 1221

Notify client that task is completed 1224

Figure 12

U.S. Patent Oct. 25, 2016 Sheet 13 of 13 US 9,479,382 B1

Computing device

3000
Processor Processor Processor
3010a 3010b o 3010n

i : :

/O interface 3030

System memory 3020 Network interface

Code Data 3040
3025 3026 T

Other device(s)
3060

Figure 13

US 9,479,382 Bl

1

EXECUTION PLAN GENERATION AND
SCHEDULING FOR
NETWORK-ACCESSIBLE RESOURCES

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing
systems being co-located (e.g., as part of a local network) or
instead located in multiple distinct geographical locations
(e.g., connected via one or more private or public interme-
diate networks). For example, data centers housing signifi-
cant numbers of interconnected computing systems have
become commonplace, such as private data centers that are
operated by and on behalf of a single organization, and
public data centers that are operated by entities as businesses
to provide computing resources to customers. Some public
data center operators provide network access, power, and
secure installation facilities for hardware owned by various
customers, while other public data center operators provide
“full service” facilities that also include hardware resources
made available for use by their customers. However, as the
scale and scope of typical data centers has increased, the
tasks of provisioning, administering, and managing the
physical computing resources have become increasingly
complicated.

The advent of virtualization technologies for commodity
hardware has provided benefits with respect to managing
large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be
efficiently and securely shared by multiple customers. For
example, virtualization technologies may allow a single
physical computing machine to be shared among multiple
users by providing each user with one or more virtual
machines hosted by the single physical computing machine,
with each such virtual machine being a software simulation
acting as a distinct logical computing system that provides
users with the illusion that they are the sole operators and
administrators of a given hardware computing resource,
while also providing application isolation and security
among the various virtual machines. Furthermore, some
virtualization technologies are capable of providing virtual
resources that span two or more physical resources, such as
a single virtual machine with multiple virtual processors that
spans multiple distinct physical computing systems. As
another example, virtualization technologies may allow data
storage hardware to be shared among multiple users by
providing each user with a virtualized data store which may
be distributed across multiple data storage devices, with
each such virtualized data store acting as a distinct logical
data store that provides users with the illusion that they are
the sole operators and administrators of the data storage
resource.

In many environments, operators of provider networks
that implement different types of virtualized computing,
storage, and/or other network-accessible functionality allow
customers to reserve or purchase access to resources in any
of several different resource acquisition modes. For
example, a customer may reserve a virtual compute resource
instance for a relatively long duration, such as one year or
three years, or a customer may purchase resources for
shorter terms on an ad-hoc basis as needed. For some types
of resource reservations, at least a portion of the price paid
by the customer may fluctuate over time in response to
changing demand and supply of the resources within the
provider network. The provider network operator may have

10

15

20

25

30

35

40

45

50

55

60

65

2

to try to ensure that a number of potentially competing
demands are met, e.g., that all guaranteed commitments to
clients (such as long-term reservations that have already
been paid for) are honored, that the dynamically-varying
component of resource pricing does not get so high that
customer satisfaction suffers, that the provider’s data center
investment is justified by a reasonable level of resource
utilization and revenue, and so on. Depending on customer
budgets, at least for certain types of typically long-running
applications for which the major execution constraint is that
the application should ideally be completed before some
relatively distant deadline, some customers may be willing
to allow the network provider operator flexibility in deter-
mining exactly which resources are deployed and when,
especially in return for pricing benefits.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example system environment,
according to at least some embodiments.

FIGS. 2a and 2b illustrate example resource instance
classification approaches, according to at least some
embodiments.

FIG. 3 illustrates an example of a set of sources from
which data may be gathered by a resource manager to
generate task execution plans, according to one embodi-
ment.

FIG. 4 illustrates example constituent elements of a task
execution query, according to at least some embodiments.

FIG. 5 illustrates example constituent elements of a task
execution plan, according to at least some embodiments.

FIG. 6 illustrates example interactions between a client
and a resource manager configured to generate execution
plans in response to task execution queries, according to at
least some embodiments.

FIG. 7 illustrates a portion of an example web-based
interface that may be implemented to allow clients to submit
task execution queries, according to some embodiments.

FIG. 8 illustrates a portion of an example web-based
interface that may be implemented to allow clients to submit
subtask preferences, according to some embodiments.

FIG. 9 illustrates a portion of an example web-based
interface that may be used to display a task execution plan,
according to some embodiments.

FIG. 10 illustrates a portion of an example web-based
interface that may be used to display a current status of a
task, according to some embodiments.

FIG. 11 is a flow diagram illustrating aspects of the
functionality of a resource manager operable to support
deadline-based task pricing and scheduling, according to at
least some embodiments.

FIG. 12 is a flow diagram illustrating a subset of the
functions of a resource manager configured to automate
subtask scheduling, according to at least some embodiments.

FIG. 13 is a block diagram illustrating an example com-
puting device that may be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion is to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limit

US 9,479,382 Bl

3

the scope of the description or the claims. As used through-
out this application, the word “may” is used in a permissive
sense (i.e., meaning having the potential to), rather than the
mandatory sense (i.e., meaning must). Similarly, the words

“include,” “including,” and “includes” mean including, but
not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of methods and apparatus for man-
aging dynamic pricing, reservation and allocation of net-
work-accessible resources are described. Networks set up by
an entity such as a company or a public sector organization
to provide one or more services (such as various types of
cloud-based computing or storage) accessible via the Inter-
net and/or other networks to a distributed set of clients may
be termed provider networks in this document. Such a
provider network may include numerous data centers host-
ing various resource pools, such as collections of physical
and/or virtualized computer servers, storage devices, net-
working equipment and the like, needed to implement and
distribute the infrastructure and services offered by the
provider. The resources may in some embodiments be
offered to clients in units called “instances,” such as virtual
or physical compute instances or storage instances. A virtual
compute instance may, for example, comprise one or more
servers with a specified computational capacity (which may
be specified by indicating the type and number of CPUs, the
main memory size, and so on) and a specified software stack
(e.g., a particular version of an operating system, which may
in turn run on top of a hypervisor). A number of different
types of computing devices may be used singly or in
combination to implement the resources of the provider
network in different embodiments, including general pur-
pose or special purpose computer servers, storage devices,
network devices and the like.

Operators of such provider networks may in some
instances implement a flexible set of resource reservation,
control and access interfaces for their clients. For example,
a resource manager of the provider network may implement
a programmatic resource reservation interface (e.g., via a
web site or a set of web pages) that allows clients to learn
about, select, purchase access to, and/or reserve resource
instances. Such an interface may include capabilities to
allow browsing of a resource catalog, provide details and
specifications of the different types or sizes of resources
supported, the different reservation types or modes sup-
ported, pricing models, and so on. The provider network
may support several different purchasing modes (which may
also be referred to herein as reservation modes) in one
embodiment: for example, long-term reservations, on-de-
mand resource allocation, or spot-price-based resource allo-
cation. Using the long-term reservation mode, a client may
make a low, one-time, upfront payment for a resource
instance, reserve it for a specified duration such as a one or
three year term, and pay a low hourly rate for the instance;
the client would be assured of having the reserved instance
available for the term of the reservation. Using on-demand
mode, a client could pay for capacity by the hour (or some
appropriate time unit), without any long-term commitments
or upfront payments. In the spot-price mode, a client could
specify the maximum price per unit time that it is willing to
pay for a particular type of resource, and if the client’s
maximum price exceeded a dynamic spot price determined
at least in part by supply and demand, that type of resource
would be provided to the client. In some embodiments,
dynamically resizable pools of resource instances may be set

20

25

30

40

45

55

4

aside for the different reservation types or modes—e.g.,
long-term reserved instances may be allocated from one
pool, on-demand instances from another, and so on. During
periods when the supply of the requested resource type
exceeded the demand, the spot price may become signifi-
cantly lower than the price for on-demand mode. In some
implementations, if the spot price increases beyond the
maximum bid specified by a client, a resource allocation
may be interrupted—i.e., a resource instance that was pre-
viously allocated to the client may be reclaimed by the
resource manager and may be allocated to some other client
that is willing to pay a higher price. Other purchasing modes
or combinations of modes may be implemented by the
resource manager in some embodiments.

Some clients may wish to take full advantage of the
choices available among various pricing options, resource
sizes, and the like, and may be willing to specify the details
for each of the resource instances that they need. However,
for certain types of applications, some clients may not be as
concerned about exactly which type of resources are utilized
and when, as long as the applications are completed on or
before a specified deadline and within a specified budget.
For example, scientists or researchers that wish to perform
a potentially months-long series of computations using a
bioinformatics, physics, or astronomy application may have
a fairly limited budget, and may therefore be willing to trade
off tight control on resource selection and scheduling in
return for lower total costs of the computing. In some cases,
clients may simply desire that a given task be completed at
the lowest possible cost, regardless of exactly which
resources are used or when. Other clients may wish to
specify a few constraints—such as the total number and/or
sizes of instances to be used, or in the case of data transfer
tasks, the total amount of data to be transferred from a
specified source to a specified destination—and may wish to
leave the selection of the resources to the resource manager.
For some clients, allowing a resource manager to select
resources and schedule subtasks of the application may be
considered a benefit in and of itself, independently of any
monetary benefits. Given such flexibility, a resource man-
ager may be able to make more effective scheduling deci-
sions to meet the needs of a wider set of clients—e.g.,
portions of the long-term computation tasks may be sched-
uled on resources during periods when the resources are not
heavily utilized, and may be paused or suspended when the
workload from other customers (who may be willing to pay
a higher pricing rate than the scientists or researchers) on
those resources increases. In embodiments where the pro-
vider network resources are organized into pools with asso-
ciated pricing policies, the resource instances to be used
during any given period of time for the long-term compu-
tations may be selected from the appropriate pool, e.g., a
spot-instance pool or an on-demand instance pool, based for
example on a current pricing of resources of the pool and a
current utilization level of the pool.

According to one such embodiment, a resource manager
in such an environment may receive a task execution query
comprising a specification of a task to be performed for a
client, where the specification has an associated target
deadline for completion of the task and an associated budget
constraint for completion of the task. In response, the
resource manager may generate an execution plan for the
task, where the plan comprises using a resource of a selected
resource pool to perform at least a portion of the task. The
resource pool may be selected based at least in part on the
pricing policy of the resource pool and an analysis of the
task specification. Other factors may also be taken into

US 9,479,382 Bl

5

consideration in selecting the resource pool or resource type,
such as whether the task or its subtasks can be resumed after
an interruption without excessive overhead, and so on. The
resource manager may provide an indication of the execu-
tion plan to the client in some embodiments, e.g., in order to
receive an approval of the plan. The resource manager may
then schedule an execution of at least a portion of the task
on a resource from the selected resource pool.

In one simple scenario, the entire task may be scheduled
as one unit of work, and after the task completes, the client
may be notified of the task completion. In many scenarios,
however, the task may be split into smaller subtasks, either
based on explicit subtask boundaries defined by the client, or
based on automated subtask generation by the resource
manager. In one embodiment, the client may be provided the
opportunity to either specify the details of each subtask, or
opt in to an automated subtask scheduling option. Clients
may specify various task and subtask properties in different
embodiments, such as for example the interruptibility char-
acteristics of the task or of individual subtasks, whether any
or all of the sub-tasks can be run in parallel, performance
requirements or desired resource sizes for the task or sub-
tasks, and so on. In some embodiments deadlines and or
budget constraints may be specified at the subtask level as
well as or instead of at the task level.

In some embodiments the provider network may be
organized into a plurality of geographical regions, and each
region may include one or more availability zones. An
availability zone in turn may comprise one or more distinct
locations or data centers, engineered in such a way that the
resources in a given availability zone are insulated from
failures in other availability zones. That is, a failure in one
availability zone may not be expected to result in a failure
in any other availability zone; thus, the availability profile of
a resource instance is intended to be independent of the
availability profile of a resource instance in a different
availability zone. Clients may be able to protect their appli-
cations from failures at a single location by launching
multiple application instances in respective availability
zones. At the same time, in some implementations, inex-
pensive and low latency network connectivity may be pro-
vided between resource instances that reside within the same
geographical region (and network transmissions between
resources of the same availability zone may be even faster).
In some implementations clients may also be able to specify
preferred availability zones for their tasks and/or subtasks.

The resource manager may use the specified preferences
and properties, the target deadline(s) as well as budget
constraints in its attempt to identify the most suitable
resources and/or resource pools for the client’s tasks and/or
subtasks. In some embodiments the resource manager may
be configured to utilize resource usage history to help in
resource selection and scheduling. For example, if the client
has previously scheduled similar tasks, the resource man-
ager may be able to use metrics gathered for the earlier tasks
(such as whether and when tasks or subtasks were inter-
rupted and restarted) to deduce interruptibility of the current
tasks, which may in turn allow the resource manager to
make better pool selection decisions. If the resource man-
ager is able to determine that the subtasks of a client are
idempotent and can be resumed without significant over-
head, cheaper spot resource instances (which can be inter-
rupted at short notice or without notice) may be an appro-
priate choice instead of potentially more expensive
on-demand instances. In some embodiments, even if the
client does not explicitly indicate that subtasks can be
performed in parallel, the resource manager may be able to

10

15

20

25

30

35

40

45

50

55

60

65

6

analyze the task specification provided by a client (or the
client’s resource usage history) and determine whether any
subtasks can in fact be executed in parallel. Similarly, in
some embodiments the resource manager may be able to
identify the performance ratings of the resources that may be
needed for a task or subtask based on an analysis of the task
specification and/or based on resource usage history.

In some embodiments several different types of tasks and
sub-tasks may be schedulable by the resource manager. For
example, in one embodiment the resource manager may be
capable of scheduling data transfer tasks and subtasks, as
well as compute tasks and subtasks. Whereas a compute task
may require a successful execution of one or more applica-
tions, a data transfer task may (as its name implies) comprise
the movement of a specified data set from a source device to
a destination device. For example, a provider of online
videos may wish to replicate or copy large video data sets
from one set of storage devices at one data center of the
provider network, to another data center, and may wish to
take advantage of the cost savings available by allowing the
resource manager to schedule the transfer of the data over
time, as long as an overall deadline is met. A source or
destination device for a data transfer task or subtask may be
within the provider network, or may form part of a client
network (i.e., the source or destination may be located at
premises or data centers controlled managed or owned by
the client). In some embodiments a client task may comprise
both compute subtasks and data transfer subtasks.

A variety of different techniques may be used for data
transfer tasks or subtasks in different embodiments. For
example, for data transfers between client network devices
and provider network resources, the resource manager may
have the option of using (a) a network path that is shared or
sharable by multiple clients (b) a network path that is
dedicated for use by one client and includes a direct physical
link installed at client request between the client’s network
equipment and the provider network’s equipment, which
may be referred to as private network paths or “direct-
connect” paths or (c) a transfer of portable physical storage
device such as a removable disk drive, DVD, or the like.

In one embodiment the resource manager may support
several different types of task execution queries. As noted
above, some task execution queries may specify both a time
constraint such as a deadline, and a budget constraint, and
the resource manager may in response generate an execution
plan intended to meet both those constraints. In a second
types of task execution query, a client may specify a budget
constraint and provide a task specification, and in effect ask
the resource manager “How soon can you complete the
specified task within this budget limit”? In a third type of
task execution query, a client may specify a time constraint
and in effect ask the resource manager “What is the lowest
cost that you can quote for completing this task within these
time constraints”? In some embodiments, another supported
query type may simply request that the resource manager
generate the execution plan with the lowest estimated execu-
tion cost, e.g., without a specified budget limit or even a
specified deadline. Yet another query type may specify a
required or minimum number of resource instances to be
acquired for the task, independently of which locations the
instances are in. Other query types may be supported as well,
such as a request to transfer a specified data set, with no
specific deadline or target budget. For each type of query, the
resource manager may analyze the task specification
describing the work required, as well as any other properties
or characteristics specified by the client, and make a best-
effort attempt to obtain an answer to the client’s query.

US 9,479,382 Bl

7

The client may in some embodiments use an interface
(such as web page or pages, an application programming
interface or API, or a command-line interface) implemented
by an interface manager (which may be incorporated within
the resource manager in some implementations) to specify
task execution queries. By changing the parameters and
constraints, the client may be able to try out a variety of
different “what-if” scenarios before agreeing to a particular
execution plan. In some embodiments, clients may be able
to view the current execution status of their tasks or subtasks
using the interface. In some embodiments, additional infor-
mation about executed tasks and subtasks may be available
via the interface or interfaces, such as program output, error
logs, exception logs, and so on.

Example System Environment

FIG. 1 illustrates an example system environment,
according to at least some embodiments. The system 100
includes a provider network 110 comprising a plurality of
geographical regions such as regions 112A and 112B. Each
geographical region 112 may include one or more availabil-
ity zones 120, such as availability zones 120A and 120B in
region 112A, and availability zones 120K and 120L in
region 112B. Each availability zone 120 may in turn include
a plurality of resources such as resource instances 130A,
130B, 130D, 130E, 130G and 130H in availability zone
120A. The instances may be organized into various resource
pools in some embodiments, such as reserved instance pool
121A, on-demand instance pool 121B, and spot instance
pool 121C. The various resource instances 130 in the
different availability zones 120 may be reserved and/or
allocated for use by clients 148. Each instance pool 121 may
have associated resource management and pricing policies,
governing for example whether a reservation or allocation of
a resource instance can be interrupted, whether reservations
of one client can be resold to another, the different types of
static and dynamic pricing rates in effect for instances of the
pool, and so on. For clarity, the various types of instance
pools 121 that may be implemented are shown only for
availability zone 120A in FIG. 1; the other availability zones
may have their own sets of instance pools 121. Not all the
availability zones may implement the same sets of pools: for
example, some availability zones may implement only
reserved instance pools and on-demand pools, and may not
implement a spot instance pool. In some embodiments other
instance pools not shown in FIG. 1 may be implemented,
such as an “available instance” pool comprising currently
idle instances, from which instances may be moved to other
pools in response to instance enablement requests. It is noted
that the pools may represent logical collections or aggrega-
tions, so that, for example, the presence of two instances in
the same pool or sub-pool may not necessarily imply any-
thing about the physical location of the hardware used for
the two instances.

In the illustrated embodiment, system 100 includes a
resource manager 180 operable to perform a variety of
operations in response to requests submitted by clients 148.
An interface manager component 183 of the resource man-
ager 180 may in some embodiments implement one or more
programmatic interfaces allowing clients 148 to submit task
execution queries in which task specifications, goals,
requirements, deadlines, and/or budget constrains are speci-
fied, and respond to such requests by generating task execu-
tion plans, as described below in further detail. In some
embodiments, instead of being included within the resource
manager 180, the interface manager 183 may be imple-
mented externally. If an acceptable task execution plan is
found, the resource manager 180 may schedule the tasks in

10

15

20

25

30

35

40

45

50

55

60

65

8

accordance with the plans, using resources 130 selected
from one or more pools 121 at one or more availability zones
120. In some embodiments the resource manager 180 may
wait for a task implementation request from the client before
initiating the task. The interface implemented by the
resource manager 180 may also support a variety of other
functionality—e.g., allowing clients to search for, browse,
reserve and acquire desired types of instances 130 to obtain
various types of services, e.g., to run and/or access various
applications. Although the instances 130 illustrated in FIG.
1 are shown as belonging to availability zones 120, in other
embodiments the provider network 110 may be organized
differently: e.g., in some embodiments availability zones
may not be implemented. Instance pools may be imple-
mented within availability zones in some implementations
(e.g., each availability zone may have its own reserved
instance pool), while in other implementations an instance
pool or sub-pool may span multiple availability zones.

As indicated in FIG. 1, the resource manager 180 may
receive task execution queries of various types from clients
148. In one type of query, the client may specify task
specifications such as the executable program or programs to
be used, a deadline by which the task is to be completed, and
a budget constraint indicating for example a maximum
amount the client is willing to pay for completion of the task.
Queries which simply request that the resource manager
respond with the lowest-estimated-cost execution plan may
be supported in some embodiments, e.g., without a specified
deadline or a specified budget limit being indicated by the
client. In another embodiment, clients may specify a
required or minimum number of resource instances (the
types/sizes of instances needed may also be specified in
some cases) for the task, without indicating specific avail-
ability zones or other location details of the instances. For
data transfer tasks, in some embodiments the data set to be
transferred may be specified, as well as source/destination
information, e.g., without specific budget limits or dead-
lines. In response, the resource manager 180 may generate
one or more execution plans for the task, using the infor-
mation provided by the client in the request, as well as
additional sources of information such as the pricing and/or
interruptibility polices in effect for the various resource
pools 121, and in some cases resource usage data. The
resource usage data (which may be retrieved from resource
management database 191 in some embodiments) may for
example include the requesting client’s past task execution
history, resource utilization and billing history, and overall
resource usage trends for a given set of instances 130 that
may be usable for the client’s tasks. In some cases the
resource manager may use past resource usage data and
trends for a given set of resource instances to develop
projections of future resource usage, and use these projec-
tions in developing the execution plan or plans. Based on an
analysis of the task specification and information from some
or all of these additional data sources, the resource manager
180 may select one or more resource pools 121 to perform
at least a portion of the task as part of an execution plan. In
some embodiments, the resource manager 180 may send a
notification of an execution plan to the client 148. In
response to a task implementation request from the client
148, the resource manager 180 may schedule and/or initiate
at least a portion of the task at a resource instance from a
pool identified for the execution plan. In some embodiments
a task implementation request separate from the task execu-
tion query may not be required—i.e., if the resource man-
ager 180 can find an execution plan that meets the various

US 9,479,382 Bl

9

constraints indicated in the execution query, the execution
plan may be initiated without further interaction with the
client 148.

In some embodiments the interface implemented by the
interface manager 183 or the resource manager 180 may
allow the client 148 to specify various preferences or
suggestions that may be useful in generating the execution
plans. For example, in one embodiment the client 148 may
specify details of subtasks into which the task can be
divided, e.g., for finer grained scheduling. If the client is
willing to let the resource manager 180 partition the task into
subtasks, a preference or setting for automated subtask
generation may be specified instead. For example, in some
cases the client’s applications may conform to a well-known
execution pattern or industry standard methodology (such as
the map-reduce programming framework or one of various
parallel programming approaches that use the message pass-
ing interface or MPI), and the resource manager 180 may be
able to determine subtask boundaries as a result of analyzing
the task specification or description provided by the client.
Interruptibility settings or preferences for the task or sub-
tasks may be included in the execution query in some
embodiments. If the nature of the task application or appli-
cations is such that a given task or subtask may be paused
and then later resumed without substantial overhead or redo
work required, the task may be suitable for spot instances,
for example; and conversely, if it is difficult to save task or
subtask state for resumption, or if the entire task has to be
repeated if it is interrupted, the task may be more suitable for
on-demand instances or reserved instances. In some embodi-
ments the resource manager 180 may be able to deduce
interruptibility characteristics, e.g., based on analyzing the
task specification, analysis of previously submitted tasks, or
other factors, instead of relying on the client to provide
interruptibility preferences. In some cases, the choice of the
specific pool to be used for a client’s task may be made
based largely on the deadline and price rather than on
interruptibility—e.g., even if a client’s task can be resumed
after interruption with relatively small overhead, it may be
advisable to use a non-interruptible instance such as an
on-demand instance instead of a spot instance, simply
because the task deadline is close and even the small
interruptibility overhead may potentially cause the deadline
to be missed.

Clients 148 may also specify parallelizability character-
istics of their applications in some embodiments, e.g., indi-
cating whether some or all sub-tasks can be run in parallel
if sufficient resources are available. In one embodiment, as
in the case of interruptibility characteristics discussed above,
the resource manager may be able to analyze the task
specification to identify whether any sub-tasks are paral-
lelizable. The preferred performance ratings of resources to
be used for various tasks or subtasks may also be specified
via the interface in some embodiments, e.g., the client may
indicate that resources with performance equivalent to four
3 GHz cores of a particular CPU architecture should be
dedicated for a given subtask if possible. If the client 148
does not specify the resource performance requirements, the
resource manager 180 may choose the size of the instances
to be used, again based on analysis of the task specification
and/or resource usage history for similar tasks executed in
the past. Location-related preferences (such as availability
zones or regions in which the task should be scheduled) may
also be provided by the client in some embodiments. The
prior resource usage history of the client, as well as data
about the locations where the client currently has resources

10

15

20

25

30

35

40

45

50

55

60

65

10

in use or reserved, may also be used to decide instance
locations for the client’s task execution.

In some embodiments both compute tasks (which require
a successful execution of a program executable) and data
transfer tasks (which require a specified data set to be
successfully transported from a source device to a target
device) may be supported. A given task may include com-
pute subtasks as well as data transfer subtasks in such
embodiments. In some implementations, data transfer opera-
tions may be combined with computation operations in a
given subtask or task.

The resource manager 180 may support several types of
task execution queries in some embodiments. For example,
a client 148 may, instead of supplying a deadline for a task,
wish to determine the earliest possible time at which a task
can be completed within a given budget constraint. Or, the
client 148 may, instead of specifying a budget constraint,
wish to determine the cost of completing a task before a
target deadline. As noted above, various other types of task
execution queries may also be supported in some embodi-
ments: e.g., queries requesting a least-estimated-cost plan,
queries requesting plans that include acquiring a specified
number and/or type of resource instance, or queries that
request plans for data transfers of a specified amount of data
or a specific data set. The interface for task execution
requests supported by the resource manager 180 may allow
clients to specity various different “what-if scenarios” using
combinations of such different types of queries before a
specific execution plan is chosen or approved for implemen-
tation. Once an execution plan is implemented, e.g., by
starting an execution of a first compute sub-task or data
transfer sub-task, the client 148 may be allowed to view the
current status of the execution via the interface in some
embodiments.

As subtasks are executed, or even during the execution of
a given subtask or task, the resource manager 180 may in
some embodiments regenerate or refresh the execution plan,
e.g., based on current operational conditions and prices in
the provider network. For example, especially for long-
running tasks or subtasks, utilization levels or prices may
have changed since the initial execution plan was formu-
lated, which may lead the resource manager 180 to modify
the plans for the remaining portion of the task. In addition,
a given subtask may take longer or use more resources than
was estimated when the initial execution plan was gener-
ated, which may also influence the scheduling of the remain-
ing subtasks. In some embodiments the resource manager
180 may notify (or obtain approval from) the client 148
when execution plans are to be changed; in other embodi-
ments, as long as the original constraints for pricing and/or
timing specified by the client are met, the resource manager
180 may not be obligated to inform the client of changes to
the plan.

Resource Instances Categories and Associated Pricing Mod-
els

As noted above, the resource instances 130 of a provider
network may be grouped into classes or categories based on
several different dimensions in some embodiments, and the
pricing policies associated with different classes may differ.
Some of the categories may be reflected in the manner in
which the resources are organized into pools, as indicated in
FIG. 1. FIGS. 2a and 254 illustrate example resource instance
classification approaches, according to at least some
embodiments. FIG. 2qa illustrates an approach in which
instances are classified based in part on the timing or
duration of instance allocations—i.e., on when instances are
obtained by clients and when they are released by the clients.

US 9,479,382 Bl

11

Three high-level types 201 of resource instances are shown:
reserved instances 203, on-demand instances 205, and spot-
instances 207, each with respective pricing policies 203P,
205P and 207P. In one embodiment, a client 148 may reserve
an instance for fairly long periods, such as a one-year term
or a three-year term in accordance with the pricing policy
203P, by paying a low, one-time, upfront payment for the
instance, and then paying a low hourly rate for actual use of
the instance at any desired times during the term of the
reservation. Thus, the client 148 may, by making the long-
term reservation, be assured that its reserved instance 203
will be available whenever it is needed.

If a client 148 does not wish to make a long-term
reservation, the client may instead opt to use on-demand
instances 205 (or spot instances 207). The pricing policy
205P for on-demand instances 205 may allow the client 148
to pay for resource capacity by the hour with no long-term
commitment or upfront payments. The client 148 may
decrease or increase the resource capacity used, based on
application needs, and may only have to pay the hourly rate
for the instances used. In some cases the per-hour pricing for
on-demand instances may be higher than the hourly rate for
reserved instances, because the relatively long durations of
reservations may provides a more stable revenue stream to
the operator of the provider network than the potentially
more dynamic revenue stream provided by on-demand
instances. Spot instances 207 may provide a third type of
resource purchasing and allocation model. The spot pricing
policy 307P may allow a client 148 to specify the maximum
hourly price that the client is willing to pay, and the resource
manager 180 may set a spot price for a given set of resource
instances 130 dynamically based on the prices clients are
willing to pay and on the number of instances available to
support the spot model. If a client 148’s bid meets or exceeds
the current spot price, an instance may be allocated to the
client. If the spot price rises beyond the bid of the client
using a spot instance 207, access to the instance by the client
may be revoked (e.g., the instance may be shut down).

The prices of reserved instances 203, on-demand
instances 205, and spot instances 207 may also vary based
on the availability zones 120 or geographic regions in which
the instances are located. The operator of provider network
110 may have had to pay different costs for setting up data
centers in different physical locations, and may have to pay
varying location-dependent ongoing costs for infrastructure
and maintenance services such as network connectivity,
cooling and so on, which may result in different pricing
policies for different availability zones and/or regions. Fluc-
tuations in supply and demand may also result in time-
varying prices for the different types of instances. Of course,
the price for a given long-term reservation may typically
remain unchanged once a client completes the reservation.

In some embodiments, reserved instances 203 may be
further classified based on expected uptime ratios. The
uptime ratio of a particular reserved instance 130 may be
defined as the ratio of the amount of time the instance is
activated, to the total amount of time for which the instance
is reserved. Uptime ratios may also be referred to as utili-
zations in some implementations. If a client 148 expects to
use a reserved instance for a relatively small fraction of the
time for which the instance is reserved (e.g., 30%-35% of a
year-long reservation), the client may decide to reserve the
instance as a Low Uptime Ratio instance 215, and pay a
discounted hourly usage fee in accordance with the associ-
ated pricing policy 215P. If the client 148 expects to have a
steady-state workload that requires an instance to be up most
of the time, the client may reserve a High Uptime Ratio

10

15

20

25

30

35

40

45

50

55

60

65

12

instance 211 and potentially pay an even lower hourly usage
fee, although in some embodiments the hourly fee may be
charged for the entire duration of the reservation, regardless
of the actual number of hours of use, in accordance with
pricing policy 211P. An option for Medium Uptime Ratio
instances 213, with a corresponding pricing policy 213P,
may be supported in some embodiments as well, where the
upfront costs and the per-hour costs fall between the corre-
sponding High Uptime Ratio and Low Uptime Ratio costs.
Instance pricing may also vary based on other factors. For
example, in the case of compute instances, the performance
capacities of different CPUs and other components of com-
pute servers such as memory size may come into play. FIG.
2b shows an example classification of compute instances
based on instance performance ratings 251. Large instances
253 may have more computing capacity than medium
instances 255, which in turn may have more computing
capacity than small instances 257. Accordingly, different
pricing policies 253P, 255P and 257P may be implemented
for the different sizes of instances. In one embodiment, a
task execution query submitted by a client may specify the
sizes and/or types of instances to be acquired, and may leave
the decision of where (e.g., which availability zone or zones)
the instances are obtained, up to the resource manager 180.
For example, a task execution request may in effect ask the
resource manager “Please generate an execution plan to
allocate six large instances for my task; other details of when
and where the task gets executed are up to you”. In some
embodiments, software features such as operating systems,
hypervisors, middleware stacks and the like may also be
taken into account in determining the pricing policies asso-
ciated with various instances. For both compute instances
and storage instances, storage device characteristics such as
total storage capacity, supported I/O rates and the like may
be used to develop pricing policies in some implementa-
tions. Pricing policies may also be determined by network-
ing capabilities and networking usage (e.g., number of
megabytes of data transferred, and/or the distances over
which network traffic is transmitted). Other classification
dimensions and techniques, including extensions of the
basic hierarchies shown in FIGS. 2a¢ and 25, may be imple-
mented in other embodiments. The various pricing policies,
including static and dynamic components of pricing, as well
as location-dependent and location-independent compo-
nents, may be taken into consideration by the resource
manager 180 when developing execution plans in response
to task execution queries in some embodiments, as described
below in further detail. Some or all of the pricing informa-
tion may be stored in and retrieved from resource manage-
ment database 191.
Information Sources Used for Execution Plan Generation
FIG. 3 illustrates an example of a set of sources from
which data may be gathered by resource manager 180 to
generate task execution plans, according to one embodi-
ment. As shown, the resource manager 180 may obtain task
specifications 307, task budget goals (which may be
expressed simply by indicating that the plan for the lowest
feasible estimated cost should be generated) or constraints
309 (such as specified budget targets), and/or task timing
constraints such as deadlines 311, from the task execution
query 303 submitted by a client 148. In some embodiments
clients may specify instance count requirements 313 (e.g., a
requirement that N instances of a particular type be allo-
cated), and/or data transfer requirements 315 (e.g., indicat-
ing an amount of data to be transferred, or a specific data set
to be transferred, from a specified source to a specified
destination). The task specification 307 may indicate various

US 9,479,382 Bl

13

details of the task—e.g., whether the task is a compute task
or a data transfer task, what programs or executables are to
be used for the task, how the success of the task is to be
determined, performance-related requirements (such as
minimum CPU power, memory size, network bandwidth),
and so on. In embodiments where the client 148 is allowed
to specify subtasks, the same kinds of information may be
specified for each subtask. Budget constraints and timing
constraints may also be specified at the subtask level as well
as, or instead of, at the task level in some embodiments.
Budget constraints 309 may include for example the total
price the client is willing to pay for task or subtask comple-
tion, or the maximum usage-based billing rate the client is
willing to pay. Timing constraints 311 may indicate the
deadline by which the task or subtask is to be completed. In
some embodiments specific budget constraints and/or timing
constraints may be omitted, allowing the resource manager
180 even greater flexibility in planning and scheduling tasks
and subtasks.

The pricing data 303 used by the resource manager 180
may include the current pricing in effect for the various types
of resources (such as on-demand or spot instances) at
various locations of the provider network, as well as past
variations in such prices over time. In some embodiments,
the resource manager 180 may develop a predictive model
that projects pricing changes in the future, based on pricing
variations in the past. Especially for long-lasting tasks and
subtasks, the projections of future pricing based on past
trends may be extremely useful in determining the execution
plans for the client’s query. Resource usage records 305 for
the requesting client 148, as well as overall resource utili-
zation data for the various types of instances supported, may
also be helpful in deciding where the client’s tasks should be
run and when. The resource manager 180 may be able to
identify similarities between a client’s previously-executed
tasks and the current task specification 307 in some embodi-
ments, allowing the resource manager 180 to make more
informed choices. For example, in one scenario a task T1
may have been executed earlier on behalf of a given client
using a resource instance R1 at an availability zone AZ1, and
the initial estimates for the time it took to complete T1 were
eventually found to be incorrect by 10%. If a new task
execution query 303 for a task T2 is received from the same
client, such that the task specification 307 for T2 is very
similar to the task specification received earlier for T1, the
resource manager 180 may be in a position to make a better
estimate for how long it might take to complete T2, using
records for the resources used by T1. In addition, the
resource manager 180 may also decide to use similar
resources at the same availability zone AZ1 that was used
before, for example because the usage history data indicates
that the similar task T1 completed successfully without any
functional errors. More general resource usage data (i.e.,
data not specific to the requesting client) may also be useful
in deciding the specific location and type of resources to be
used for the current request—for example, the resource
manager may schedule the new tasks at a more lightly-
utilized availability zone than one that is extremely busy.
Projections for future resource utilizations may also be made
based on past usage data, and may in some implementations
be tied to projections of future pricing. Pricing data 303
and/or usage records 305 may be maintained in a repository
such as resource management database 191 in some embodi-
ments. In some implementations the resource manager 180
may obtain current resource usage data from various moni-

10

15

20

25

30

35

40

45

50

55

60

65

14

toring agents distributed in the provider network, instead of
or in addition to obtaining historical usage data from a
repository.

Taking some or all of these data into account, together
with the contents of the query 303, the resource manager 180
may generate at least one task execution plan 351 that meets
the client’s constraints. The task execution plan may include
such details as when and where various subtasks are to be
initiated, the current estimate of when they are expected to
be completed, the estimated costs, and so on. In some
embodiments task execution plans 303 may be stored in a
persistent store such as the resource management database
191 as well, e.g., as an XML file or in some other appropriate
format. In some embodiments a client 148 may be billed a
specified amount for the generation of a task execution plan,
e.g., based on the complexity of the task specification 307,
while in other embodiments an execution plan may be
generated without an associated billing amount. In one
embodiment, if the resource manager is unable to generate
even one execution plan 351 that meets the constraints
specified by the client, the resource manager 180 may
suggest alterations to the constraints that may lead to fea-
sible execution plans. For example, the resource manager
180 may indicate to the client that while the specified task
cannot be completed within the requested thirty days for the
requested price, it may be feasible to complete the task
within forty days for the requested price. After an execution
plan 351 is accepted, it may be put into effect by the resource
manager 180 in accordance with a schedule included in the
plan.

Example Elements of Task Execution Queries

FIG. 4 illustrates example constituent elements of a task
execution query 303, according to at least some embodi-
ments. As shown, the query may include an indication of a
query type 403. Six example query types are shown. As
suggested by its name, a GeneratePlanForDeadlineAndBud-
get query may indicate that the client is going to specify both
a deadline and a budget limit for the task, and the resource
manager 180 is to generate a plan in accordance with both
the deadline and the budget limit. If the client 148 wants to
obtain an estimate of how long it might take to complete a
specified task under a given budget limit, the Estimate-
CompletionDateForBudget query type may be used. If the
client wants to obtain an estimated quote for what it might
cost to complete a specified task within a specified time, the
EstimateCostForCompletionDate query type may be used. If
the client simply wants the cheapest feasible plan, without
any specific deadline or budget target, the GenerateCheap-
estPlan query type may be used. If the client wants to ensure
that a specified number of resource instances are obtained
for the task, the GeneratePlanForInstanceCount query type
may be used in some embodiments. In one embodiment, the
GeneratePlanForDataTransfer query type may be used, ifthe
client simply wants a plan to transfer a specified data set,
without specific budget targets or deadlines.

Task specification 307 may in some embodiments include
an AutoGenerateSubTasks option 405 and/or an AutoSched-
uleSubTasks option 407. If the client 148 opts in for the
AutoGenerateSubTasks option, this may serve as an indica-
tion that the resource manager 180 is responsible for parti-
tioning the task into subtasks if such a partition is possible.
If the client selects the AutoScheduleSubTasks option, the
resource manager may be authorized thereby to schedule
subtasks as appropriate, e.g., without requiring further
approval from the client to initiate each subtask. In cases
where the client wishes to execute the entire task without
partitioning it, both of these options may be set to “false” by

US 9,479,382 Bl

15

the client. In some cases if a client 148 selects (or sets to
“true”) the AutoGenerateSubTasks option, the AutoSched-
uleSubTasks option may also be set to “true” automatically;
in other cases the two options may be set completely
independently of each other.

Clients that wish to specify subtask-level details may do
so in the form of a subtask collection 409. As shown, a
subtask collection 409 may include one or more separate
subtask specifications 421. Budget constraints 309 at the
task level, such as the total amount the client is willing to
pay for the task, may be included in the execution query,
e.g., if the query is an EstimateCompletionDateForBudget
query or a GeneratePlanForDeadlineAndBudget query.
Similarly task-level timing constraints 311, such as an
overall deadline for the entire task, may be included either
e.g., if the query is an EstimateCostForCompletionDate
query or a GeneratePlanForDeadlineAndBudget query. In
some embodiments preferences for task execution locations
413, such as desired regions 112 or availability zones 120
may be indicated in the task execution query. Interruptibility
preferences 415 (e.g., the logical equivalent of “Do not
interrupt this task™ or “Interrupt and restart my task as
needed”) may also be included in some implementations.
The client’s preference or suggestion for parallelizing the
task 416 may also be specified in the task execution query
in some implementations. Instance count requirements 471
and/or data transfer requirements 472 may be specified in
some implementations, e.g., for GeneratePlanForlnstance-
Count queries and GeneratePlanForDataTransfer queries
respectively.

Those clients that wish to define subtasks and their
associated properties may do so via subtask specifications
421 as noted above. For clients that do not wish to partition
their task into subtasks, a single subtask specification may
still be usable to provide details for the entire task in some
implementations. For each subtask, the provided details may
include a subtask name and description 422 and a subtask
type (such as compute or data transfer) 461. Details of the
program executable to be used for the subtask may be
provided in element 423. Data set details, e.g., the input and
output locations for the data used or transferred by the
application may be indicated in element 425. An interrupt-
ibility setting 427 at the subtask level may be included via
element 429. Performance requirements 429 for the task,
such as a minimum CPU requirement, memory size require-
ment, [/O transfer rate requirement, network bandwidth
requirement and the like, may be included in the subtask
specification as shown. Whether the subtask can be executed
in parallel with other subtasks may be indicated via element
431, and any dependencies of the subtask on other subtasks
may be indicated via element 433—e.g., a particular subtask
S4 may only be schedulable if subtasks S1 and S2 have
completed successfully, or a subtask S5 may depend on a
website with URL URL1 being up. Budget constraints,
timing constraints and location preferences may be specified
at the subtask level using elements 435, 437 and 439 in some
embodiments. Not all the fields for tasks or subtasks may be
populated in a given task execution query 303, and some
fields may be populated with default values if a specific
value is not specified by the client 148. Various fields shown
only at the subtask level (e.g., executable component details
423) in FIG. 4 may be implemented at the task level as well
in some implementations.

Example Elements of Task Execution Plans

FIG. 5 illustrates example constituent elements of a task
execution plan 351 that may be generated in response to a
task execution query 303, according to at least some

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments. As noted earlier, task execution plans, espe-
cially for long-running tasks, may evolve over time as
operational conditions change in the provider network. As
shown, the plan 351 may include a last-updated timestamp
field 503, indicating when the plan was last updated. In some
implementations where multiple versions of execution plans
are maintained, a pointer 505 to a previous version may also
be included in the plan. The initial cost estimate for com-
pleting the entire task may be included in element 521, and
the current or most recent measurement of accumulated
actual cost may be included in element 523. Comparisons of
the initial estimated cost to the actual costs incurred thus far
during execution may be very helpful in modifying the plan
to meet the client’s budget constraints.

In the illustrated embodiment, the task execution plan 351
may include a subtask schedule 561 with a collection of
execution details 509 for each of a plurality of subtasks 410.
In the example shown, respective execution plans for six
subtasks 410A-410F are illustrated in a directed graph
format, in which the directions of the edges indicate the
sequence in which the subtasks are expected to be imple-
mented. For example, subtask 410B is to be executed after
subtask 410A, while either subtask 410C or subtask 410D
(or both) can be scheduled after subtask 410B.

A subtask execution details element 509 may include an
identifier 539 of the subtask, an identifier or identifiers 541
of the resource instance(s) to be used for the subtask, and a
scheduled start time 543 for the subtask. An element 549
may indicate the actual start time for subtasks that have
already begun. An estimates of the fraction of the subtask
that has been completed thus far may be included as element
545, and element 547 may include the current estimated
completion time of the task. The current status of the task
(e.g., whether it is running, waiting to be scheduled, or
failed) may be indicated by element 551. In some embodi-
ments the current accumulated subtask cost may be indi-
cated via element 553. In some implementations, an indi-
cator of any exceptions or errors encountered during the
subtask’s execution may be available via an element 555.
The various elements that contain metrics or data pertaining
to actual execution (e.g., elements 523, 549, or 553) may be
set to zero or null values until the corresponding task or
subtask begins execution. The rates or intervals at which the
metrics are updated may be configurable via parameters
specified by the client in some embodiments.

Interactions Between Resource Managers and Clients

FIG. 6 illustrates example interactions between a client
148 and a resource manager 180 configured to generate
execution plans 351 in response to task execution queries
303, according to at least some embodiments. As shown by
the arrow labeled “1”, the client 148 may submit a task
execution query 303, e.g., via a programmatic interface
implemented 603 by the interface manager 183 or the
resource manager 180. The programmatic interface may
comprise one or more graphical user interfaces (GUIs), web
pages or web sites, APIs, command-line interfaces, or any
desired combination of such interfaces in various embodi-
ments. Using the various data sources discussed above in
conjunction with the description of FIG. 3, the resource
manager 180 may generate a task execution plan. The
resource manager 180 may then provide a response to the
client’s query 303, as indicated by the arrow labeled “2” in
FIG. 6. The response, which may also be formatted in
accordance with interface 603 in some embodiments, may
indicate to the client that an execution plan for the task has
been found.

US 9,479,382 Bl

17

In some embodiments, as indicated by the arrow labeled
“3” in FIG. 6, the client 148 may optionally modify the
original query 303, or submit additional queries, specifying
various what-if scenarios such as a different deadline or a
different budget limit. If such modified or new queries are
submitted, the resource manager 180 may perform the
needed computations (such as the generation of new plans or
modified plans 351) and respond to the client 148, as
indicated by the arrow labeled “4”. The client 148 may then
submit a task implementation request (as indicated by the
arrow labeled “5”), e.g., indicating an approved execution
plan for the resource manager 180 to implement.

In response to the implementation request, the resource
manager 180 may schedule the execution of a task or subtask
in accordance with an approved plan 351, and inform the
client 148 of the scheduled execution(s), as indicated by the
arrow labeled “6”. Subsequently, in some implementations,
the client 148 may use portions of the same interface 603 to
submit status queries for its tasks and/or subtasks, as indi-
cated by the arrow labeled “7”. In some embodiments in
which the resource manager is allowed to modify the task
execution plan 351, the client 148 may also be able to view
the updates to the execution plans, or one or more versions
of'the execution plan, via the programmatic interface 603. In
some embodiments different interfaces may be usable for the
various interactions illustrated in FIG. 3—e.g., a client may
specify a task execution query via a web interface and later
view task status via an API or command-line interface.
Example Web-Based Interfaces

FIG. 7 illustrates a portion of an example web-based
interface that may be implemented to allow clients to submit
task execution queries, according to some embodiments. As
shown, the interface may comprise a web page 700 includ-
ing a number of different regions. The web page 700 may
include a message area 703. Various task-level details may
be specified using respective fields in the illustrated embodi-
ment. In some embodiments the interface shown may be
usable not just for an initial task execution query, but also to
submit additional queries later on the lifetime of the task,
e.g., if the client wished to change some preferences or
constraints. A task identifier may be specified via field 705
for previously-created tasks in such embodiments. For a
first-time query on a given task, field 705 may be left blank,
as indicated by the message shown for field 705, and the
resource manager 180 may assign or generate a task iden-
tifier. Field 707 may be usable to indicate a description for
the task. The type of the task, e.g., whether it is a compute
task, a data-transfer task, or a combination, may be specified
via field 709. The executable program or programs to be
used may be indicated via field 711. Deadline and/or budget
constraints or goals may be specified via fields 713 and 715
respectively. In some embodiments the client may simply
indicate a general budget goal (e.g., to obtain the cheapest
feasible execution plan) without specifying specific numeri-
cal budget constraints.

A number of different types of task-level preferences may
be indicated using some of the remaining fields of web page
700. A preferred availability zone may be indicated via field
717. If the client has preferences about the type of instance
to be used, such as on-demand vs. spot vs. reserved
instances, such a preference may be indicated using field
719. Interruptibility preferences (such as whether the task
can be paused and resumed without excessive overhead)
may be specified via field 721. The default setting shown for
field 721 (“interruptible and idempotent™) indicates that the
task can be paused and restarted, and also that the task can
be run multiple times without erroneous results. Perfor-

10

15

20

25

30

35

40

45

50

55

60

65

18

mance-related preferences such as a required or preferred
instance size (small vs. medium vs. large, for example) or
instance count may be specified via field 723. If the client
148 is willing to let the resource manager 180 attempt to
partition the task into smaller subtasks (as described in the
discussion of field 405 of FIG. 4 above), an affirmative
response may be selected for the auto-generate subtasks field
725. Similarly, if the client is willing to let the resource
manager 180 schedule subtasks without additional approval
by the client, an affirmative response may be selected for the
auto-schedule subtasks field 727. Clients wishing to specify
details for individual subtasks may be allowed to do so using
button 729. Clicking on next button 731 may take the client
148 to additional web pages of the interface, which may for
example be used to provide additional details of the task,
such as a source, destination and data set size in the case of
a data transfer task.

FIG. 8 illustrates a portion of an example web-based
interface that may be implemented to allow clients 148 to
submit subtask preferences, according to some embodi-
ments. The illustrated web page 800 may be displayed, for
example, when a client 148 clicks on the subtask detail
button 729 of web page 700 in FIG. 7. For each subtask for
which the client 148 wished to provide details, a correspond-
ing form submission page 800 may be shown, and a new
subtask number or identifier (similar to the subtask identifier
0001 shown in message area 803) may be generated by the
resource manager 180. A name and description of a subtask
may be provided using fields 805 and 807 respectively. The
remaining fields of the example subtask specification form
shown may allow the client 148 to supply similar types of
constraints and preferences at the subtask level as were
specified at the task level using the fields shown in FIG. 7.
For example, the type of task (compute vs. data transfer)
may be indicated via field 809, the executable program to be
run may be indicated via field 811, and performance-related
requirements such as instance size, CPU speed or memory
size may be indicated via field 815, Location preferences
may be specified via another field such as field 817. Subtask
dependencies (such as whether a given subtask can only be
started after another subtask has already been completed)
may be indicated via field 819. In embodiments where
budget and/or timing constraints can be specified at the
subtask level, fields 821 and 823 may be used to indicate
such constraints. Button 829 may be used to proceed to
another subtask specification, and button 831 may be used to
indicate that the client 148 has finished specifying subtasks
for the task being considered.

FIG. 9 illustrates a portion of an example web-based
interface that may be used to display a task execution plan
351 generated by resource manager 180 in response to a task
execution query, according to some embodiments. As
shown, the interface may include a web page 900. The web
page may include a field 903 indicating when the plan was
generated or last updated. Field 905 may show an estimated
completion date for the task, and may also indicate the
deadline specified by the client in the corresponding task
execution query. Field 907 may show an estimated cost of
completing the task, and may indicate the budget constraint
specified by the client. In the illustrated embodiment, the
client may also be able to modify the original budget
constraint and/or the original time constraint using clickable
links in fields 905 and 907. Thus, in this example the client
148 may specify various alternative what-if scenarios by
updating the deadline or total task budget.

Area 911 of web page 900 may provide high-level infor-
mation regarding the execution plans for various subtasks of

US 9,479,382 Bl

19

the task. (In cases where the task is not partitioned into
multiple subtasks, an area similar to 911 may serve to
provide details of the entire task, which may be considered
as the equivalent of a single subtask.) In the illustrated
example, two subtasks with respective identifiers 0001 and
0002 are shown. For each subtask, an estimated start time
and end time, the sizes and locations (e.g., availability
zones) of instances to be used, and the estimated cost of the
subtask are shown in area 911. In some implementations, the
client may be allowed to submit a task implementation
request corresponding to the execution plan, e.g., by select-
ing the “Yes” response to the question “Would you like us
to implement this execution plan?” in area 913 of web page
900. In one embodiment, a graphical illustration of the task
execution plan may be accessed via button 915. Button 917
may allow the client to return to a home page of the task
specification web site.

FIG. 10 illustrates a portion of an example web-based
interface that may be used to display a current status of a
task, according to some embodiments. As shown, the inter-
face may include web page 1000 in which the task identifier
(e.g., “T65456655” in the illustrated example) and/or task
name of the task may be displayed. A timestamp field 1003
may indicate the time at which the displayed status infor-
mation was obtained, and as in the illustrated example, a
clickable link or other control may be provided to allow the
client to refresh the status. Fields 1005 and 1007 may
display the current (as of the time of the latest status refresh)
estimated completion time and the current estimated cost or
price of the task, respectively. The deadline and budget
limits specified by the client 148 for the task may also be
displayed, as also shown in fields 1005 and 1007.

In some implementations the status of individual subtasks
may also be displayed via a portion of the interface. In FIG.
10, for example, area 1011 shows the current status of two
subtasks 0001 and 0002. In this example, subtask 0001 is
currently running while subtask 0002 is scheduled for later
execution. For a running task, the actual start time and the
currently estimated end time may be shown; in some imple-
mentations, the originally estimated start time may also be
displayed for reference. The resources being used may also
be indicated, together with their availability zone(s) or other
location information. The accumulated cost of the running
subtask may also be shown. In the illustrated example,
clickable links are provided to allow the client 148 to view
the latest output from the running subtask (e.g., the output
from a command similar to “tail -f<standard output file>" on
Linux-based systems), and or the latest exceptions or errors
encountered by the subtask (which may be accumulated in
an error or exception log). For a subtask that is currently
scheduled for later execution, such as subtask 0002 in FIG.
10, the estimated start and end times may be shown, together
with the resources expected to be used and the locations of
the resources. Various other details may be shown in other
embodiments, and some of the details illustrated in the
example web page 1000 may be hidden. It is noted that
although web-based interfaces have been shown in the
examples of FIGS. 7, 8, 9, and 10, similar information may
be displayed to (or provided by) the client 148 using other
types of programmatic interfaces in some embodiments,
such as other GUIs, various APIs, command-line interfaces,
or a combination thereof.

Methods to Implement Resource Manager Functionality

FIG. 11 is a flow diagram illustrating aspects of the
functionality of a resource manager 180 operable to support
deadline-based task pricing and scheduling, according to at
least some embodiments. As shown in element 1101, a task

25

30

40

45

55

20

execution query 303 with a task specification 307 may be
received by the resource manager 180, e.g., via a program-
matic interface such as a web page similar to that shown in
FIG. 7. The task specification 307 may include details on the
types of task (e.g., whether it is a compute task, a data
transfer task, or a combination), the executable and/or data
set for the task, subtask information where applicable, as so
on, as discussed above in conjunction with the description of
FIG. 4. Depending on the types of task execution queries
supported, the query may also include general budget-
related goals such as a request for the lowest expected cost
plan, a specific pricing constraint 309 such as a budget limit,
and/or a timing constraint 311 such as a deadline by which
the task is to be completed. In some embodiments other
types of requirements such as the number and/or types of
resource instances to be allocated may be included in the
request, or the data set to be transferred from a specified
source to a specified destination.

In response to the task execution query 303, as indicated
in element 1105 of FIG. 11, the resource manager may
generate one or more task execution plans 351. A task
execution plan 351 may identify at least one resource pool
from which a resource of a particular type (such as an
on-demand instance or a spot-instance) is to be allocated for
the task. In some embodiments, resources may be managed
individually instead of being organized into pools, in which
case the execution plan may simply comprise a selection of
the type of resource to be used, or in some cases the actual
resource to be used. The pool or the resource type may be
chosen based at least in part on the corresponding pricing
policy associated with the pool, the task specification, and/or
the constraints or preferences specified for the task. An
indication of the execution plan may be provided to the
requesting client 148 in some embodiments (element 1109).

The client 148 may submit a task implementation request
corresponding to a task execution plan 303 in some embodi-
ments (element 1113). In response, the resource manager
180 may schedule and/or initiate execution of a task (or a
subtask in embodiments where subtasks are supported) in
accordance with the execution plan (element 1117). In some
implementations, a task implementation request may not be
required; e.g., the resource manager may simply execute the
task in response to the task execution query itself if the
various constraints specified by the client can be met and if
the client has agreed that no additional approval or imple-
mentation request is necessary. One or more interfaces may
be implemented by the resource manager 180 to allow
clients 148 to view the status of the task and/or its subtasks.
In some embodiments, the resource manager 180 may
modify or tune the execution plan over time, e.g., in
response to changing operational conditions in the provider
network 110, changing prices that may be influenced by
supply and demand, and the like. For example, in one
scenario the resource manager 180 may change an execution
plan to use resource instances at a different location or of a
different type (e.g., replace an on-demand instance in the
plan with a spot instance) if that results in a lower cost to the
client, or in a quicker execution of the task. Such plan
refresh operations or modifications may be performed based
on various criteria in different embodiments: for example,
based on a schedule (e.g., plans may be reviewed and
modified if necessary every week), whenever a subtask is
completed, and/or in response to user requests. When the
entire task is completed, the client 148 may be notified.

FIG. 12 is a flow diagram illustrating a subset of the
functions of a resource manager 180 configured to automate
subtask scheduling, according to at least some embodiments.

US 9,479,382 Bl

21

As shown in element 1201, a task execution query request-
ing automated scheduling of subtasks may be received by
the resource manager 180. The resource manager 180 may
determine subtask boundaries (element 1203 of FIG. 12)
either based on subtask specifications 421 explicitly pro-
vided by the client 148, or based on an analysis of the task
specification. For example, if the task specification indicates
that the task uses a standard programming design pattern
such as map-reduce, the resource manager 180 may be able
to partition the task into subtasks without additional input
from the client 148. In some embodiments, the resource
manager 180 may be able to determine subtask boundaries
based on analysis of resource usage history of the client—
for example, if the client previously submitted similar tasks
for execution.

The resource manager 180 may then generate an initial
schedule for various subtasks (element 1206), based for
example on constraints and preferences provided by the
client at the task level or the subtask level, and/or on subtask
characteristics (such as subtask parallelizability) deduced by
the resource manager 180. The initial subtask schedule may
identify the types and locations of resources (e.g., on-
demand instances, spot instances, or reserved instances) to
be used for the sub-tasks, and the sequence in which the
subtasks are to be performed (which may include phases
during which multiple subtasks are run in parallel). In
response to a task implementation request (as indicated in
element 1209), the resource manager 180 may schedule or
initiate the execution of the next subtask (which may be the
first subtask of the task) or the execution of the next set of
subtasks that can be executed in parallel (element 1212). If
all the subtasks have been attempted or completed (as
determined in element 1215), the client may be notified that
the task has been completed (element 1224). If subtasks
remain (as also determined in element 1215), in the illus-
trated embodiment the resource manager 180 may determine
whether the plans for the remaining subtasks need to be
modified (element 1218). If such a modification appears
justified, one or more of the execution plans for the remain-
ing subtasks may be modified (element 1221). The resource
manager 180 may then schedule the next subtask or set of
parallel subtasks based on the updated plans. If no modifi-
cation were deemed necessary to the plans for remaining
subtasks, the resource manager may use the existing version
of the plans for scheduling the remaining subtasks. The
pattern of completing a subtask, then checking whether
plans for remaining subtasks need modification and making
such modifications if needed, may be continued until all
subtasks have been attempted and the client is notified that
the task is complete.

Subtask execution plans may be modified based on a
number of different factors in different embodiments. For
example, the resource manager 180 may discover that a
particular subtask S1 of task T1 took longer than expected
to complete, so a subsequent subtask S2 of task T1 may need
to be rescheduled at a more powerful compute instance to
ensure that the overall task deadline can be met. In another
example, a particular subtask S3 of task T1 may have been
completed more quickly than expected, so it may be possible
to schedule a subsequent subtask S4 at a slower or less
powerful server than originally planned, thereby potentially
reducing the client’s billing charges. Various other factors
may contribute to subtask plan re-computations, which may
be performed not just when a subtask is completed, but at
other times, e.g., based on a plan refresh schedule being
implemented by the resource manager 180, or in response to
refresh requests from clients 148. It is noted that in some

10

15

20

25

30

35

40

45

50

55

60

65

22

embodiments not all the operations illustrated in FIGS. 11
and 12 may be performed in the order shown, and some of
the illustrated operations may be omitted—for example,
subtask plan modifications may not be supported in some
implementations.

Example Use Cases

The techniques described above for deadline-based pric-
ing and scheduling of network-accessible resources may be
useful in a wide variety of environments. As the size and
complexity of cloud-based resource provisioning grows, and
more and more applications are deployed into cloud envi-
ronments, the probability that resources of a particular type
or in a particular data center remain underutilized at least
temporarily may grow. Resource managers that can utilize
that unused capacity to tasks or subtasks that can be paused
and resumed, will help provider network operators to maxi-
mize their return on investment, while also increasing the
customer base of the provider network.

The functionality described above may be particularly
useful to certain classes of clients, such a s academic
researchers, that have potentially long-duration computing
tasks, but also low computing budgets. Such researches may
be willing to wait for their tasks to be completed using spare
resource capacity, as long as their budget limits are not
compromised and as long as their typically long term overall
task deadlines can be met. Such researchers may also be
more willing to either partition their tasks themselves into
manageable subtasks that are idempotent and/or interrupt-
ible, or to follow industry standard programming paradigms
that allow resource managers to analyze task specifications
to partition and schedule subtasks. The deadline-based com-
puting approaches described herein may also be suitable for
big data applications such as social media data analysis,
sensor data analysis, bioinformatics applications and the
like.

Tlustrative Computing Device

In at least some embodiments, a server that implements a
portion or all of one or more of the technologies described
herein, including the techniques to implement the function-
ality of resource manager 180 and the interface manager
183, may include a computing device such as a general-
purpose computer system that includes or is configured to
access one or more computer-accessible media. FIG. 13
illustrates such a general-purpose computing device 3000. In
the illustrated embodiment, computing device 3000 includes
one or more processors 3010 coupled to a system memory
3020 via an input/output (I/O) interface 3030. Computing
device 3000 further includes a network interface 3040
coupled to 1/O interface 3030.

In various embodiments, computing device 3000 may be
a uniprocessor system including one processor 3010, or a
multiprocessor system including several processors 3010
(e.g., two, four, eight, or another suitable number). Proces-
sors 3010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 3010 may be general-purpose or embedded pro-
cessors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 3010 may commonly, but not
necessarily, implement the same ISA.

System memory 3020 may be configured to store instruc-
tions and data accessible by processor(s) 3010. In various
embodiments, system memory 3020 may be implemented
using any suitable memory technology, such as static ran-
dom access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other

US 9,479,382 Bl

23

type of memory. In the illustrated embodiment, program
instructions and data implementing one or more desired
functions, such as those methods, techniques, and data
described above, are shown stored within system memory
3020 as code 3025 and data 3026.

In one embodiment, I/O interface 3030 may be configured
to coordinate /O traffic between processor 3010, system
memory 3020, and any peripheral devices in the device,
including network interface 3040 or other peripheral inter-
faces. In some embodiments, /O interface 3030 may per-
form any necessary protocol, timing or other data transfor-
mations to convert data signals from one component (e.g.,
system memory 3020) into a format suitable for use by
another component (e.g., processor 3010). In some embodi-
ments, 1/O interface 3030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Universal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O inter-
face 3030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, in some embodiments some or all of the functionality
of I/O interface 3030, such as an interface to system memory
3020, may be incorporated directly into processor 3010.

Network interface 3040 may be configured to allow data
to be exchanged between computing device 3000 and other
devices 3060 attached to a network or networks 3050, such
as other computer systems or devices as illustrated in FIGS.
1 through 12, for example. In various embodiments, network
interface 3040 may support communication via any suitable
wired or wireless general data networks, such as types of
Ethernet network, for example. Additionally, network inter-
face 3040 may support communication via telecommunica-
tions/telephony networks such as analog voice networks or
digital fiber communications networks, via storage area
networks such as Fibre Channel SANs, or via any other
suitable type of network and/or protocol.

In some embodiments, system memory 3020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above for
FIGS. 1 through 12 for implementing embodiments of the
corresponding methods and apparatus. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-acces-
sible medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 3000 via 1/O
interface 3030. A non-transitory computer-accessible stor-
age medium may also include any volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc, that may be included in
some embodiments of computing device 3000 as system
memory 3020 or another type of memory. Further, a com-
puter-accessible medium may include transmission media or
signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 3040. Portions or all of multiple comput-
ing devices such as that illustrated in FIG. 12 may be used
to implement the described functionality in various embodi-
ments; for example, software components running on a
variety of different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
age devices, network devices, or special-purpose computer
systems, in addition to or instead of being implemented

10

15

20

25

30

35

40

45

50

55

60

65

24

using general-purpose computer systems. The term “com-
puting device”, as used herein, refers to at least all these
types of devices, and is not limited to these types of devices.
Conclusion

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-acces-
sible medium may include storage media or memory media
such as magnetic or optical media, e.g., disk or DVD/CD-
ROM, volatile or non-volatile media such as RAM (e.g.
SDRAM, DDR, RDRAM, SRAM, etc.), ROM, etc, as well
as transmission media or signals such as electrical, electro-
magnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit
of this disclosure. It is intended to embrace all such modi-
fications and changes and, accordingly, the above descrip-
tion to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:
1. A system, comprising:
a plurality of computing devices configured to implement
a plurality of resources of a provider network, wherein
the resources are organized into a plurality of resource
pools, wherein each resource pool of the plurality of
resource pools has an associated pricing policy and an
associated resource usage interruptibility policy, and
wherein at least one resource pool of the plurality of
resource pools has a different resource usage interrupt-
ibility policy than another one of the plurality of
resource pools; and
one or more computing devices configured to implement
a resource manager;
wherein the resource manager is configured to:
receive a task execution query comprising a specifica-
tion of a task to be performed for a client using one
or more resources of the plurality of resources,
wherein the specification has an associated target
deadline for completion of the task and an associated
budget constraint for completion of the task;

determine an interruptibility characteristic of at least a
portion of the task, wherein the interruptibility char-
acteristic describes a suitability of the at least a
portion of the task for being interrupted;

in response to receiving the task execution query and
determining the interruptibility characteristic of the
at least a portion of the task, generate an execution
plan for the task, wherein the execution plan com-
prises using a resource of a selected resource pool to
perform the at least a portion of the task, wherein the
resource pool is selected from among the plurality of
resource pools based at least in part on the associated
pricing policy of the resource pool, the associated
resource usage interruptibility policy of the resource
pool, and the interruptibility characteristic of the at
least a portion of the task;

provide an indication of the execution plan to the client;
and

US 9,479,382 Bl

25

in response to a task implementation request from the
client, schedule the at least a portion of the task using
a particular resource from the selected resource pool.
2. The system as recited in claim 1, wherein the resource
manager is further configured to:
determine the interruptibility characteristic of the at least
a portion of the task based at least in part on one of: an
analysis of the task specification, an interruptibility
setting indicated in the task execution query, or an
analysis of a resource usage history record of the client.
3. The system as recited in claim 1, wherein the execution
plan comprises a plurality of sub-tasks including a first
sub-task and a second sub-task, wherein the resource man-
ager is further configured to:
determine that the first sub-task and the second sub-task
are to be performed in parallel based at least in part on
one of: a parallelizability setting indicated in the task
execution query, or a parallelizability analysis of the
task specification.
4. The system as recited in claim 1, further comprising an
interface manager configured to:
implement a programmatic interface allowing the client to
submit the task execution query,
wherein the task execution query is received via the
programmatic interface.
5. The system as recited in claim 1, wherein the resource
manager is further configured to:
determine a performance rating of the resource on which
to schedule the at least a portion of the task, based at
least in part on one of: a resource performance setting
indicated in the task execution query, or a requirements
analysis of the task specification.
6. A method, comprising:
receiving a task execution query comprising a specifica-
tion of a task to be performed for a client using one or
more resources of a plurality of resources, wherein the
specification has an associated target deadline for
completion of the task, and wherein each resource of
the plurality of resources has an associated pricing
policy and an associated resource usage interruptibility
policy, wherein at least one of the plurality of resources
has a different resource usage interruptibility policy
than another one of the plurality of resources;
determining an interruptibility characteristic of at least a
portion of the task, wherein the interruptibility charac-
teristic describes a suitability of the at least a portion of
the task for being interrupted;
in response to receiving the task execution query and
determining the interruptibility characteristic of the at
least a portion of the task, generating an execution plan
for the task, wherein the execution plan comprises
using a resource of the plurality of resources to perform
the at least a portion of the task, and wherein the
resource is selected from the plurality of resources
based at least in part on the associated pricing policy of
the resource, the resource usage interruptibility policy
of the resource, the associated target deadline, and the
interruptibility characteristic of the at least a portion of
the task; and
in response to a task implementation request from the
client, scheduling the at least a portion of the task in
accordance with the execution plan.
7. The method as recited in claim 6, further comprising:
determining the interruptibility characteristic of the at
least a portion of the task based at least in part on at
least one of: an analysis of the task specification, an

5

10

15

20

25

30

35

40

45

50

55

60

65

26

interruptibility setting indicated in the task execution
query, or an analysis of a resource usage history record
of the client.

8. The method as recited in claim 6, wherein the execution
plan comprises plans for a plurality of sub-tasks including a
first sub-task and a second sub-task, further comprising:

determining that the first sub-task and the second sub-task

are to be performed in parallel based at least in part on
one of: a parallelizability setting indicated in the task
execution query, or a parallelizability analysis of the
task specification.

9. The method as recited in claim 6, further comprising:

implementing a programmatic interface allowing the cli-

ent to submit the task execution query,

wherein the task execution query is received via the

programmatic interface.

10. The method as recited in claim 6, wherein the speci-
fication comprises an indication that the task comprises one
or more compute sub-tasks, wherein each sub-task of the one
or more compute sub-tasks comprises an execution on a
computing device of an executable component specified for
the compute sub-task.

11. The method as recited in claim 6, wherein the speci-
fication comprises an indication that the task comprises one
or more data transfer operations, wherein each operation of
the one or more data transfer operations comprises a transfer
of'a specified data set from a source to a destination, wherein
at least one of the source and destination of a particular data
transfer operation of the one or more data transfer operations
comprises the resource.

12. The method as recited in claim 11, wherein said
scheduling the at least a portion of the task comprises one of:
(a) an initiation of a network transfer of the specified data
set, using a network path sharable by two or more clients, at
a time determined at least in part on the associated target
deadline (b) an initiation of a network transfer of the
specified data set, using a private network connection estab-
lished between a client network of the client and a data
center comprising the resource or (c) a transfer of a copy of
the specified data set to the resource from a physical storage
device transported from a client premise of the client to a
data center comprising the resource.

13. The method as recited in claim 6, wherein the speci-
fication has an associated budget constraint of the client, and
wherein the execution plan is based at least in part on the
associated budget constraint.

14. The method as recited in claim 6, further comprising:

receiving a second task execution query comprising a

second specification of a second task to be performed
for a client using one or more resources of the plurality
of resources, wherein the second specification has an
associated budget constraint for completion of the
second task, and wherein the second task execution
query comprises a request for a target time for comple-
tion of the second task in accordance with the associ-
ated budget constraint; and

in response to receiving the second task execution query,

generating an estimated target completion time for the
second task, based at least in part on pricing policies of
one or more resources of the plurality of resources and
an analysis of the second specification.

15. The method as recited in claim 6, wherein the execu-
tion plan comprises plans for a plurality of sub-tasks,
wherein a particular sub-task of the plurality of sub-tasks

US 9,479,382 Bl

27

comprises the at least a portion of the task, further compris-
ing:

implementing a programmatic interface allowing the cli-

ent to obtain a current status of each sub-task of the
plurality of sub-tasks.

16. The method as recited in claim 15, wherein the
programmatic interface allows the client to obtain an indi-
cation of whether an exception is encountered during the
particular sub-task.

17. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors:

receive a task execution query comprising a specification

of a task to be performed for a client using one or more
resources of a plurality of resources, wherein the speci-
fication has an associated target deadline for comple-
tion of the task, and wherein each resource of the
plurality of resources has an associated pricing policy
and an associated resource usage interruptibility policy,
wherein at least one of the resources of the plurality of
resources has a different resource usage interruptibility
policy than another one of the plurality of resources;

determine an interruptibility characteristic of at least a

portion of the task, wherein the interruptibility charac-
teristic describes a suitability of the at least a portion of
the task for being interrupted;

in response to receiving the task execution query and

determining the interruptibility characteristic of the at
least a portion of the task, generate an execution plan
for the task, wherein the execution plan comprises
using a resource of the plurality of resources to perform
the at least a portion of the task, wherein the resource
is selected from the plurality of resources based at least
in part on the associated target deadline, the associated
resource usage interruptibility policy of the resource,
and the interruptibility characteristic of the at least a
portion of the task; and

in response to a task implementation request from the

client, schedule the at least a portion of the task in
accordance with the execution plan.

18. The storage medium as recited in claim 17, wherein
the instructions when executed on the one or more proces-
SOrs:

implement a programmatic interface allowing the client to

submit the task execution query,

wherein the task execution query is received via the

programmatic interface.

19. The storage medium as recited in claim 17, wherein
the specification comprises an indication that the task com-
prises one or more compute sub-tasks, wherein each sub-
task of the one or more compute sub-tasks comprises an
execution on a computing device of an executable compo-
nent specified for the compute sub-task.

20. The storage medium as recited in claim 17, wherein
the specification comprises an indication that the task com-
prises one or more data transfer operations, wherein each
operation of the one or more data transfer operations com-
prises a transfer of a specified data set from a source to a
destination, wherein at least one of the source and destina-
tion of a particular data transfer operation of the one or more
data transfer operations comprises the resource.

21. The storage medium as recited in claim 17, wherein
the specification has an associated budget constraint of the
client, wherein the execution plan is based at least in part on
the associated budget constraint.

10

20

25

30

35

40

45

50

55

60

65

28

22. The storage medium as recited in claim 17, wherein
the instructions when executed on the one or more proces-
SOrs:
receive a second task execution query comprising a
second specification of a second task to be performed
for a client using one or more resources of the plurality
of resources, wherein the second specification has an
associated deadline for completion of the second task,
and wherein the second task execution query comprises
a request for an estimated cost of completion of the
second task in accordance with the associated deadline;
and
in response to receiving the second task execution query,
generating an estimated cost of completion of the
second task, based at least in part on pricing policies of
one or more resources of the plurality of resources and
an analysis of the second specification.
23. A system, comprising:
a plurality of computing devices configured to implement
a plurality of resources of a provider network, wherein
the plurality of resources are organized into a plurality
of resource pools, wherein each resource pool of the
plurality of resource pools has an associated pricing
policy and an associated resource usage interruptibility
policy, wherein at least one of the plurality of resource
pools has a different resource usage interruptibility
policy than another one of the plurality of resource
pools; and
one or more computing devices configured to implement
a resource manager;
wherein the resource manager is configured to:
receive a task execution query comprising a specifica-
tion of a task to be performed for a client using one
or more resources of the plurality of resources,
wherein the query comprises a request to generate a
lowest-estimated-cost execution plan for the task;

determine an interruptibility characteristic of at least a
portion of the task, wherein the interruptibility char-
acteristic describes a suitability of the at least a
portion of the task for being interrupted;

in response to receiving the task execution query and
determining the interruptibility characteristic of the
at least a portion of the task, generate an execution
plan for the task, wherein the execution plan com-
prises using a resource of a selected resource pool to
perform the at least a portion of the task, wherein the
resource pool is selected based at least in part on the
associated pricing policy of the resource pool, the
associated resource usage interruptibility policy of
the resource pool, and the interruptibility character-
istic of the at least a portion of the task;

provide an indication of an estimated cost of the plan to
the client; and

in response to a task implementation request from the
client, schedule the at least a portion of the task using
a particular resource from the selected resource pool.

24. A system, comprising:

a plurality of computing devices configured to implement
a plurality of resource instances of a provider network;
and

one or more computing devices configured to implement
a resource manager;

wherein the resource manager is configured to:
receive a task execution query comprising a specifica-

tion of a task to be performed for a client using one
or more of: (a) at least a specified number of resource

US 9,479,382 Bl
29

instances of the plurality of resources, or (b) a
network transfer of at least a specified data set;

determine an interruptibility characteristic of at least a
portion of the task, wherein the interruptibility char-
acteristic describes a suitability of the at least a 5
portion of the task for being interrupted;

in response to receiving the task execution query and
determining the interruptibility characteristic of the
at least a portion of the task, generate an execution
plan for the task, wherein the execution plan com- 10
prises using one or more resource instances of the
plurality of resource instances to perform the at least
a portion of the task, wherein the one or more
resource instances are selected based at least in part
on respective pricing policies of the one or more 15
resource instances, respective resource usage inter-
ruptibility policies of the one or more resource
instances, and the interruptibility characteristic of the
at least a portion of the task, wherein at least one of
the plurality of resources has a different resource 20
usage interruptibility policy than another one of the
plurality of resource instances; and

in response to a task implementation request from the
client, schedule the at least a portion of the task using
the one or more resource instances. 25

#* #* #* #* #*

